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Abstract

The generalized plasticity model\ as presented by Lubliner "0880#\ Lubliner et al[ "0882# and Auricchio et
al[ "0881#\ is a generalization of classical rate!independent plasticity with a yield surface[ This material model
is able to describe a reloading transient during the reloading process of a specimen\ which is shown in the
asymptotic approach of the reloading curve to the initial load curve in the stressÐstrain diagram\ as observed
in Lubhahn and Felger "0850# for copper or in Greenstreet et al[ "0860# for graphite[ In the present paper
an advantageous extension of the generalized plasticity model to _nite plastic strain regimes is given[ Classical
plasticity and the model in Auricchio and Taylor "0884# for linear kinematic and isotropic hardening rules
are included as special cases in the proposed concept[ It will be shown that the suggested modi_cation yields
a mathematically simple structure of the constitutive relations and an e.cient stress algorithm\ adaptable
to _nite element programs similar to that in Auricchio and Taylor "0884#[ Special attention is focused on a
correct treatment of the loading criteria[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Keywords] Finite deformation^ Internal variable^ Loading conditions^ Modelling of asymptotic reloading^ Plasticity

0[ Introduction

In experiments with some materials\ such as copper or graphite\ it is observed in an unloadingÐ
reloading process that plasticity is renewed before the previous maximum stress level is attained\
at which unloading began "see Fig[ 0#[ This e}ect may be viewed as premature yielding and shall
be denoted as reloadin` transient and may be accounted for by generalized plasticity[

The generalized plasticity model was presented in Lubliner "0880#\ Lubliner et al[ "0882# and
applied in Auricchio et al[ "0881#\ Lubliner et al[ "0882# and Auricchio and Taylor "0884#[ It is an
extension of classical rate!independent plasticity with a yield surface[ It may be argued that the
reloading transient is a rate!dependent e}ect[ However\ the rate!independent generalized plasticity
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Fig[ 0[ Interrupted tensile test on certi_ed OFHC copper\ see Lubhahn et al[ "0850\ p[ 375#[

concept is in a position to model this phenomenon[ The physical reasons for the reloading transient
on reloading processes of previously unloaded rate!dependent materials is di}erent to that for the
reloading transient of rate!independent plastic materials[ But the stressÐstrain diagrams of
unloaded and reloaded rate!dependent materials are quantitatively similar to that of unloaded and
reloaded rate!independent generalized plastic materials[ The solution of boundary value problems
with rate!dependent material models requires exact knowledge of the rate of loading during the
entire process[ The integration of rate!dependent constitutive equations must be performed during
the complete actual time interval\ which may be extremely long[ Hence\ the numerical analysis
becomes laborious in some cases[ The integration of the constitutive equations of rate!dependent
generalized plasticity may be performed in reduced time\ since time only orders the individual
loading events in proper sequence\ see Bland "0846#[ In addition\ the time rate of loading has no
in~uence on quasistatic mechanical processes for rate!independent material behaviour[ If the rate
of loading is known at all material points in advance\ a rate!independent model with adequately
chosen material parameters is su.cient for the solution of the associated boundary value problem[

In contrast to classical plasticity\ where the yield function must vanish identically during plastic
loading "see Simo\ 0877#\ non!zero values of the yield criterion f are allowed in generalized
plasticity[ Following this new concept\ the yield function may be regarded as an additional internal
variable besides the plastic strains and the hardening variables\ such as the backstresses and the
plastic arclength[ The missing constraint of a vanishing yield function necessitates an additional
constitutive equation\ termed as limit equation in Auricchio and Taylor "0884#[ Regarded as an
evolution equation for the yield function\ the limit equation is set up as a di}erential equation that
governs the rate of change of the yield function during plastic ~ow[ Of course\ classical plasticity
is comprised within this concept\ if the yield function and its rate are set to zero throughout the
plastic process[

The proposed extension of the generalized plasticity model to _nite plastic strain regimes and
non!linear hardening assumptions is based on a modi_cation of the original limit equation for
small strain plasticity of Auricchio and Taylor "0884#]
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F � h" f #ðN	 =T	þŁ−g¾ ¾ 9[ "0[0#

The yield function is denoted as f\ describing the yield surface in stress space\ of which N	 is the
normal\ rising in the current state of stress T	[ h" f # is a function of f\ T	þ is the time derivative of the
stress tensor T	 and g¾ is the plastic multiplier[ The scalar product " # =" # of two second!order tensors
A and B is de_ned as A = B M tr"ABT#\ where tr" # is the trace operator[

Problems with the integration of incomplete di}erentials are encountered with eqn "0[0#\ if non!
linear kinematic hardening is included in generalized plasticity[ The modi_ed limit equation\ given
in the next section\ avoids these di.culties[ In Lubliner "0863\ 0879a\ 0879b\ 0873\ 0876\ 0880#\
Auricchio et al[ "0881#\ Lubliner et al[ "0882# and Auricchio and Taylor "0884# the generalized
plasticity model was presented for linear kinematic and isotropic hardening rules and small strains\
although it was not restricted to these cases[ A generalization of this model to non!linear hardening
rules as well as _nite strain regimes will be given without complicating the system of constitutive
equations[

In Section 1[1 the concept of an unloaded elastic intermediate con_guration is introduced\
on which the constitutive equations are formulated[ Limiting the application of _nite strain
elastoplasticity to _nite plastic but small elastic strains\ which is typical for many metal alloys\ the
system of constitutive non!linear equations\ expressed with variables of the actual con_guration\
may be considerably simpli_ed ðcompare eqns "1[4# and "2[1#Ł[

The return mapping algorithms for the implementation into the _nite element program FEAP
will be presented for both regimes[ The algorithms turn out to have a simple mathematical structure
similar to that in Auricchio and Taylor "0884# and the system of non!linear constitutive equations
may be reduced to the solution of only one scalar equation "see Section 3#[ Finally\ numerical
examples are presented in Section 4 to show the performance of the model[

1[ Constitutive assumption for generalized plasticity

1[0[ Yield function\ loadin` criteria and limit equation

The yield function is given a key position in generalized plasticity[ Some new aspects concerning
the yield function in generalized plasticity are worked out in this section[

The mechanical state of an elastic body is entirely determined by the internal variables and the
second PIOLAÐKIRCHHOFF stresses T	 or alternatively\ the strains[ The set of internal variables\
considered in the present concept\ encloses the plastic part of the strains\ the plastic arclength s\
the backstresses X	 and the yield function f[ Since the model shall be rate!independent\ the variable
time does not appear explicitly in the constitutive equations[ The yield function considered is of
the VON MISES type]

f � f½"T	\ X	\ s# � F"T	−X	#−z
1
2
k"s# M 9\

where k"s# denotes the isotropic hardening variable[ Let the backstresses\ the plastic arclength and
the yield function be given[ All stress states belonging to the same value of the yield function f for
f − 9 describe a convex _ve!dimensional hypersurface in six!dimensional stress space[ This surface
shall be denoted yield surface F[ The backstresses shift the yield surface in stress space\ whereas
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Fig[ 1[ Yield surface in stress space[

f¦z
1
2
k"s# � F"T	−X	# − 9 is a measure of its dilatation[ The elastic domain is given by all states

of stress where f ³ 9\ i[e[ all points with f ³ 9 may be accessed by an elastic "loading or unloading#
process[

Let the yield surface F contain the actual state of stress and let the stress path be given[ The
normal to the yield surface in T	\ pointing outward with respect to F\ shall be denoted by N	 and
is calculated by

N	 M
1f½

1T	
\ f � f½"T	\ X	\ s#[

The points inside F are always accessible by elastic unloadin`[ This can be formulated as follows
"see Fig[ 1#[ The rate of stress T	þ may be viewed as a vector tangential to the stress!path[ If this
vector points inward with respect to the surface F\ then unloading occurs and N	 = T	þ ³ 9 holds[

All points lying outside F are accessible if at all only by a loading process[ A loading process
happens accordingly\ if N	 = T	þ − 9[ If f ³ 9\ then loading produces elastic and if f − 9 plastic
deformations[ The loading criteria are summarised]

f − 9 and N	 = T	þ × 9 : plastic loading

f ³ 9 or N	 = T	þ ¾ 9 : elastic behaviour[ "1[0#

As long as f − 9 on loading or reloading paths\ plastic ~ow occurs immediately[ This is how the
reloading transient is modelled by generalized plasticity[ The yield function governs the loading
condition through the de_nition of the elastic domain and the yield surface[

In the case of plastic loadin` the limit equation\ introduced in Auricchio and Taylor "0884#\
governs the evolution of the yield function f\ treated as an internal variable[ Its general form shall
be a rate!equation\ homogeneous and of degree one in s¾ for rate!independent plasticity[ Since the
asymptotic approach during repeated reloading processes may change with plastic deformations\
the evolution equation of f shall depend in addition on the plastic arclength s[

f¾� F
"s\ s¾\ f #[ "1[1#

In classical plasticity the yield function is not regarded as an internal variable\ since it must
vanish identically during plastic loading[ Nevertheless\ the yield function may be viewed to govern
the rate of the internal variables\ as the plastic arclength is calculated from the consistency condition
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f¾� 9[ The special form of eqn "1[0# is chosen to encompass classical plasticity\ which would not
be comprised in generalized plasticity\ if f � 9 would lead to elastic behaviour[

A convenient form of eqn "1[1#\ allowing closed form time integration for the solution\ replaces
eqn "0[0# of Auricchio and Taylor "0884# by]

F � h" f # f¾−`"s#s¾ � 9\ "1[2#

with h" f # and `"s# as two arbitrary functions of the yield function f and plastic arclength s[
Appropriate functions for h" f # and `"s# are discussed in Section 4\ to model realistic material
behaviour for the numerical examples presented[

1[1[ Finite strain model

For the _nite plastic strain model an unloaded intermediate con_guration is introduced "see
Fig[ 2# and a multiplicative split of the deformation gradient into an elastic and a plastic part is
assumed]

F � FeFp\ "1[3#

where the subscripts e and p indicate elastic and plastic contributions[ It is observed from the
transformation of GREEN|s strain tensor E � 0

1
"FTF−0# onto the intermediate con_guration that

the transformed strain tensor G is additively split into an elastic and a plastic part]

G � Ge¦Gp\ Ge � 0
1
"FT

e Fe−0#\ Gp � 0
1
"0−F−T

p F−0
p #[

In the following all tensors related to the intermediate con_guration are marked with capital
letters\ whereas those de_ned on the current con_guration are marked with small letters[ The
decomposition in eqn "1[3# is determined only up to an orthogonal tensor Q\ i[e[ QTQ � 0 and
det Q � 0\ since it holds]

F � FeFp �"FeQT#"QFp# �] F¦
e F¦

p [

Fig[ 2[ Con_gurations and tensors[
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For convenience the postulate of invariance is adopted\ i[e[ the constitutive equations\ expressed
with variables on the intermediate con_guration\ contain no information about the rotation of the
intermediate con_guration "see Casey and Naghdi\ 0879#[ Firstly\ it is observed\ that the plastic
right CAUCHYÐGREEN tensor Cp is independent of Q]

Cp � FT
p Fp � F¦T

p QQTF¦
p � F¦T

p F¦
p �] C¦

p \

that is any function of Cp or equivalently Gp ful_lls the postulate of invariance[ Secondly\ any
function of Ce � FT

e Fe must be isotropic in Ce[ This restricts the elasticity relation to isotropy as is
shown next[ Let S"Ce# be the stress tensor\ resulting from the transformation of the KIRCHHOFF!
stress tensor s onto the intermediate con_guration[ Then\ by the postulate of invariance\ it must
hold]

s � FeS"Ce#FT
e � F¦

e QS"Ce#QTF¦T

e �
;

F¦
e S"C¦

e #F¦T

e

: S"C¦
e # � QS"Ce#QT\

where C¦
e � F¦T

e F¦
e [ The isotropic\ non!linear elasticity relation of Simo and Pister "0873# satis_es

this requirement and is used to model the elastic response]

S � K ln ðdet"Ce#0:1ŁC−0
e ¦G det"Ce#−0:2 ð0−0

2
tr"Ce#C−0

e Ł[ "1[4#

Herein\ K and G are material parameters\ comparable to the bulk and shear modulus[ In the
context of _nite strains eqn "1[4# shows a physically meaningful stressÐstrain response[

The yield criterion in terms of the stresses S is given by]

f � f¼"S\ X\ s# � >"S−X#D>−z
1
2
k"s# M 9\ "1[5#

where the bracket > > denotes the EUCLIDean norm\ e[g[ >S> � zS = S and "=#D the deviator[ The
time derivative of the yield function in terms of the variables on the intermediate con_guration is]

f¾� N ="Sþ−Xþ#−z
1
2
k?"s#s¾\

with k?"s# �"1k:1s# and N �"1f¼:1S# � ð"S−X#D:>"S−X#D>Ł[ Before the evolution equations of
the tensor valued internal variables are speci_ed\ objective time derivatives of the second!order
tensors\ de_ned on the time dependent intermediate con_guration\ must be given[ By formulation
of the constitutive equations with those objective time derivatives\ no information about the
rotation of the intermediate con_guration will be introduced into the physically relevant variables
de_ned on the reference or actual con_guration "see for example Appendix A#[

The concept of dual variables in Haupt and Tsakmakis "0878# is applied\ where apart from the
stress power also the incremental stress power is invariant under a special group of transformations\
namely the same rules of transformation for stress and strain rates between the initial and the
intermediate con_guration shall hold as they do for stress and strain tensors[ This leads to the
OLDROYD derivatives for the chosen pair of dual variables\ given for the covariant plastic strain
tensor Gp as]
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Gp

Dp

� F−T

p

d
dt

"FT
p GpFp#F−0

p � Gþp¦LT
p Gp¦GpLp

and for the contravariant backstress tensor X and the stress tensor S as]

X
9p

� Fp

d
dt

"F−0
p XF−T

p #FT
p � Xþ−LpX−XLT

p \

S
9p

� Fp

d
dt

"F−0
p SF−T

p #FT
p � Sþ−LpS−SLT

p \ "1[6#

de_ned both on the intermediate con_guration and with Lp � FþpF−0
p as the velocity gradient\

formed with the plastic part of the deformation gradient[
By making use of the identity "see Appendix A#

N = S
9p

� N	 = T	þ\

the loading criteria in eqn "1[0# are extended to _nite deformation plasticity]

f − 9 and N = S
9p

× 9 : plastic loading

f ³ 9 or N = S
9p

¾ 9 : elastic behaviour[ "1[7#

The plastic strains shall evolve according to the normality rule]

GDp

p � 8g¾
1f¼

1S
� g¾N for plastic loading

9 otherwise

\ Gp"t � 9# � 9[

The normal N is a deviatoric second!order tensor\ which implies isochoric inelastic strains]

9 � det"Fp# tr"Gp

Dp

# � det"Fp# tr"Lp# � det"Fp#F−T

p = Fþp �
d
dt

det"Fp#[ "1[8#

1[2[ On models without an elastic domain

According to eqns "1[5# and "1[7# the elastic domain vanishes for some materials\ e[g[ graphite\
if k � 9\ since f � >"S−X#D> is never negative[ In classical plasticity with f � k � 9\ the normal can
no more be calculated\ as the quantity "S−X#D becomes the zero tensor[ Hence\ any deformation is
plastic[ The plastic strain would be equal to the total strain deviator and the evolution equation
for kinematic hardening with the identity

SD � XD

yields a system of six di}erential equations for the stresses[
In generalized plasticity the problem of a vanishing elastic domain may be solved elegantly[

Only in the initial state where f � 9 the normal cannot be calculated[ As soon as the yield function
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becomes positive the normal is de_ned\ since the yield surface is no more degenerated to a single
point[ Therefore\ it is suggested\ to modify the loading conditions in eqn "1[7# in case of k 0 9 in
such a way\ that in the initial state with f � 9 elastic deformations occur]

f × 9 and N = S
9p

× 9 : plastic loading

f � 9 or N = S
9p

¾ 9 : elastic behaviour[

Note the di}erence to the concept in Dafalias "0866#[ There a boundin` surface was introduced to
de_ne the normal[ In general\ the bounding surface does not include the stress state\ which must
be projected onto the bounding surface to _nd the point\ where the normal can be computed[ In
generalized plasticity the stress state is by de_nition on the yield surface f − 9\ where the normal
may be calculated "see also Lubliner\ 0880#[

1[3[ Generalized plasticity with hardenin`

The plastic arclength s and the isotropic hardening variable k"s# are given as

s¾ � z
1
2
>Gp

Dp

>\ s"t � 9# � 9

k"s# � k9¦kls¦ke e−as\

where k9\ kl\ ke and a are material parameters[ The constitutive equation for the evolution of the
backstresses X is of the ARMSTRONG and FREDERICK type "see Armstrong and Frederick\ 0855#]

X
9p

� cGp

Dp

−bs¾X\ X"t � 9# � 9\

where b and c are material parameters[

2[ Transformation to the current con_guration

The transformation of tensorial variables from the elastic intermediate con_guration to the
current con_guration is performed by means of the elastic part Fe or the deformation gradient
with the transformation rules for covariant tensors

y � F−T

e YF−0
e

and contravariant tensors

z � FeZFT
e [ "2[0#

The above indicated convention for small and capital letter symbols for tensors still holds[ The
system of constitutive equations may be considerably simpli_ed by the assumption of _nite plastic
strains but small elastic strains[ As shown by the polar decomposition theorem
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Fe � ReUe � RezCe � Rez0¦1Ge\

small elastic strains\ i[e[ >Ge> ð 0\ imply approximately]

Fe ¼ Re[

In the case of small elastic deformations\ the elastic deformation gradient is approximated by its
_nite rotation part[ The constitutive equations\ expressed in terms of variables of the current
con_guration\ simplify with this approximation to

s � K ln"det F#0¦GbD
e \ "2[1#

where be is the left CauchyÐGreen tensor equal to FeFT
e \ formed by the elastic deformation gradient[

Hence\

zdet be � det Fe � det F\

where the last equality follows from plastic incompressibility due to eqns "1[5# and "1[8#[ The yield
function f reduces approximately to f¹ ðsee Appendix B\ eqn "B[1#Ł

f ¼ f¹"s\ x\ s# � >"s−x#D>−z
1
2
k"s# � >s>−z

1
2
k"s# "2[2#

with

s �"s−x#D and n¹ �
1f¹

1s
�

s

>s>
[

The OLDROYD derivative\ applied in the following to tensor variables with base vectors on the
current con_guration\ are de_ned for co! and contravariant second!order tensors " # as]

" #
9

� "þ #¦LT" #¦" #L\

" #
D

� "þ#−L" #−" #LT\ "2[3#

where L � FþF−0 is the velocity gradient[ It may be shown "see Appendix B# that the loading
criterion in terms of tensors\ de_ned on the current con_guration\ becomes]

fÞ− 9 and n¹ = s
9
× 9 : plastic loading

f¹³ 9 or n¹ = s
9
¾ 9 : elastic behaviour[ "2[4#

The limit equation of "1[2# in terms of tensors on the current con_guration retains its simple
mathematical structure due to the similarity of eqns "1[5# and "2[2#\ whose total di}erentials yields]

f¾−X
1
2

k?"s#s¾ �
1f¼

1S
="Sþ−Xþ# ¼

1f¹

1s
="s¾−x¾ #[

The evolution equations of the plastic part of the ALMANSI strain tensor ep and the backstress
tensor x on the current con_guration "see Lu�hrs et al[\ 0886 for more details# take the form]
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e
D

p � 6
−0

1
b
9

e � g¾n¹ for plastic loading

9 otherwise
\ ep"t � 9# � 9 "2[5#

s¾ � z
1
2
>e

D

p>\ s"t � 9# � 9 "2[6#

x
9
� ce

D

p−bs¾x � g¾"cn¹−z
1
2
bx#\ x"t � 9# � 9[ "2[7#

3[ Numerical solution of the constitutive equations

From the known process variables nu\ nbe\ nx\ ns and nf¹ in the equilibrium con_guration at time
nt\ their new values at n¦0t are to be calculated for a given displacement increment Du � iu−nu in
the context of standard _nite element procedures[ If the stresses satisfy the momentum balance
equations within a small tolerance\ the history variables x\ be\ s and f¹ are updated by replacing nx\
nbe\ nu\ ns and nf¹ by mx\ mbe\ mu\ ms and mf¹ of the last "m!th# iteration for time n¦0t[

The incremental deformation gradient Fu is computed from the displacement _elds iu in the i!th
iteration and nu of the last equilibrium position]

Fu � iF nF−0[ "3[0#

The stresses is at time it are calculated with the radial return algorithm[ In the elastic!predictor step
the trial state with italic superscript T on variables is de_ned by assuming elastic behaviour with
the plastic con_guration {_xed|\ i[e[ Fþp � 9[ The internal variables of tensorial character at the last
equilibrium state are transformed onto the current con_guration according to

Tbe � Fu
nbeFT

u and Tx � Fu
nxFT

u [ "3[1#

The trial stresses are received by inserting Tbe and iF into the elasticity relation in eqn "2[1#]

Ts � K ln"det iF#0¦G TbD
e [

In the trial state the plastic arclength remains constant with respect to the last equilibrium state\
i[e[ Ts � ns[ The yield function Tf¹\ regarded as a history variable\ becomes]

Tf¹� >"Ts−Tx#D>−z
1
2
k"Ts#[

The term n¹ = s
9
�"1f¹:1s# = s

9
in the loading conditions of eqn "2[4# is approximated in the elastic

predictor step with the time increment Dt � n¦0t−nt by the di}erence quotient "see Appendix C#]

n¹ = s
9
¼

Tf¹−nf¹

Dt
�]

Df¹

Dt
[ "3[2#

If either

Tf¹¾ 9 or Df¹¾ 9\

the assumption of an elastic process holds and the solution for this iterate at time n¦0t � it is found
to be the result of the trial state[
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Fig[ 3[ Con_gurations during the iteration[

If not\ the plastic corrector has to be computed in the second step\ where the deformation is kept
constant\ i[e[ Fþ� 9 and thus\ the velocity gradient L vanishes[ The OLDROYD derivatives turn into
the material time derivatives]

b
9

e � b¾e\ x
9
� x¾ and s

9
� s¾[ "3[3#

The evolution equations are numerically integrated in time by means of a backward EULER!
di}erence scheme[ The mathematical structure of the radial return mapping algorithm of the
in_nitesimal theory is conserved by discretizing the inverse of the plastic deformation tensor\ see
Simo "0877#]

Cp � FT
p Fp � FTb−0

e F

iC−0
p � nC−0

p ¦DtCþ−0
p = it[ "3[4#

Pre! and post!multiplying eqn "3[4# by iF resp[ iFT and making use of the time derivative of eqn
"3[4# b¾e � FCþ−0

p FT for Fþ� 9 leads to]

ibe � iF nF−0 nbe
nF−T iF−T¦Dtb¾e = it[

With the de_nitions in eqns "3[0# and "3[1# this simpli_es to]

ibe � Tbe¦Dtb¾e = it "3[5#

as postulated in Lu�hrs et al[ "0886#\ eqn "4[01#[ Equation "2[5# is inserted into eqn "3[5#]

ibe � Tbe−1l in¹¦w0\ "3[6#

where the plastic rate parameter is de_ned as l � Dtg¾ and a spherical part w0 is added in to ensure
the plastic incompressibility condition\ since eqn "1[8# is not satis_ed exactly for _nite time
increments[ The scalar w\ subjected to the constraint]

det1"iF# � det"ibe# � det"Tbe−1l in¹¦w0#
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need only be calculated after equilibrium is obtained "see Lu�hrs et al[\ 0886#[ Substitution of eqn
"3[6# into eqn "2[1# results in

is � Ts−1Gl in¹ "3[7#

and eqns "2[5# and "3[3# into the discretized equations "2[6# and "2[7# gives]

ix � T"Tx¦lc in¹# "3[8#

is � ns¦z


